

Lithium-Air Batteries

P.I.: K. Amine
L. Curtiss, Jun Lu
Argonne National Laboratory
DOE merit review
June 18-21, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project ID# BAT-286

Overview

Timeline

Start: 2015

Finish: 2020

65 %

Budget

- Total project funding
 - DOE share: \$ 2400 K
 - Contractor 0
- FY 16: \$ 400 K
- FY 17: \$ 500 K
- FY 18: \$ 500 K

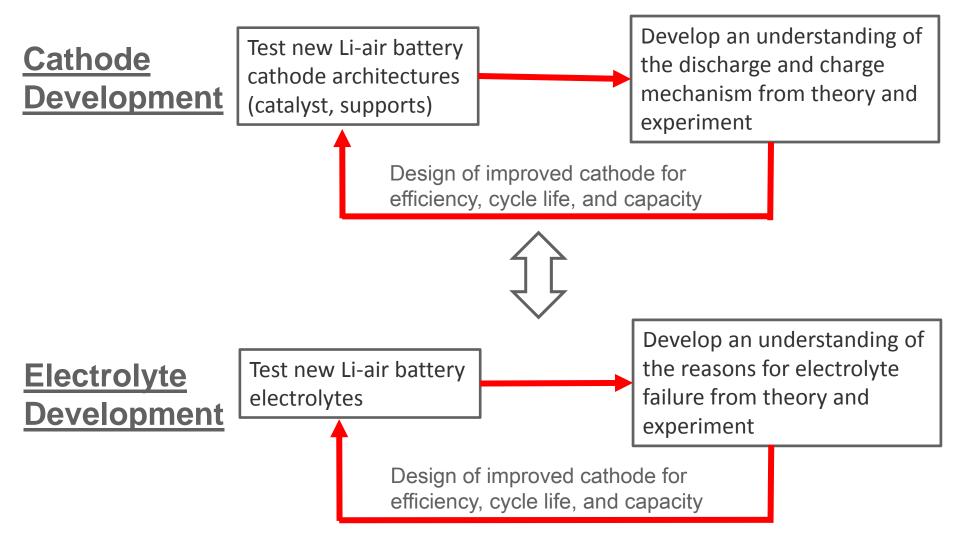
Barriers

- Barriers addressed
 - Cycle life
 - Capacity
 - Efficiency

Partners

- Interactions/ collaborations
 - S. Vajda, ANL
 - S. Al-Hallaj and B. Chaplin, UIC
 - D. Miller and J. G. Wen, ANL
 - Y. Wu, Ohio State University
 - A. Salehi, UIC
 - Anh Ngo, ANL

Project Objectives and Relevance


- Development of Li-air batteries with increased capacity, efficiency, and cycle life through use of new electrolytes that act in conjunction with new cathode architectures
- Use an integrated approach based on experimental synthesis and state-of-the-art characterization combined with high level computational studies focused on materials design and understanding
- Li-air batteries have the potential for very high energy density and low cost

FY18 Milestones

Month/ Year	Milestones
Dec/17	Investigation of highly uniform Pt ₃ Co nanoparticles in biphasic nitrogen-doping cobalt@graphene heterostructures as cathode materials. Q1 (Completed)
Mar/18	Computational studies of dependence of stability and composition of discharge products in Li-O2 batteries on ether-based electrolytes. Q2 (Completed)
Jun/18	Use of highly uniform small Ir clusters supported on reduced graphene oxide to study formation of Ir ₃ Li alloys for lithium superoxide based batteries. Q3(Initiated)
Sep/18	Investigation of dependence of discharge composition on type of ether used electrolytes from experimental studies. Q4 (Initiated)

Strategy: an integrated experiment/theory approach that combines testing, understanding and design to develop cathodes and electrolytes for Li-O₂ batteries

Experimental methods

Synthesis

- New catalyst materials
- New carbon materials
- Electrolytes

Characterization

- In situ XRD measurement (Advanced Photon Source)
- TEM imaging
- FTIR, Raman
- SEM imaging
- Impedance measurements

Testing

Swagelok cells

Highly accurate quantum chemical modeling

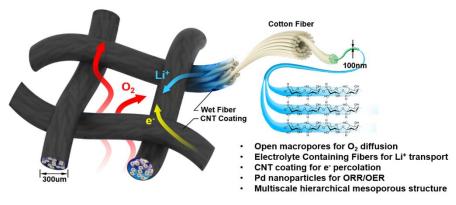
- Periodic, molecular, and cluster calculations using density functional calculations
 - Static calculations
 - Ab initio molecular dynamics simulations (AIMD)
 - Assessment with high level theories (e.g. G4 theory)
- Understanding discharge products
 - Li₂O₂ structure and electronic properties
 - LiO₂ structure and electronic properties
- Design of electrolytes
 - Reaction energies and barriers for stability screening
 - Ion pair formation
 - Electrolyte/surface interface simulations
- Design of oxygen reduction and oxygen evolution catalysts
 - Density of states
 - Adsorption energies

Technical Accomplishments

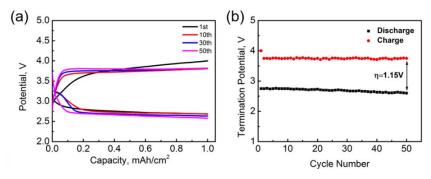
New cathode materials

- A novel Li-O₂ cathode based on a triple phase structure using textile coated with carbon nanotubes
- Metal-organic framework derived cathode for Li-O₂

II. <u>Lithium superoxide</u>

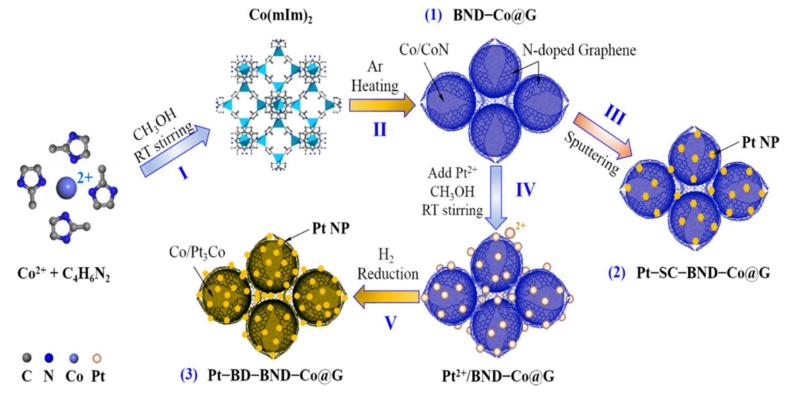

- Identification of LiO₂ by Raman spectroscopy
- Lithium superoxide based Li-O₂ battery using a cathode with Ir₈ clusters on reduced graphene oxide (rGO)

III. Electrolytes


Dependence of LiO₂ formation on type of electrolyte

A novel Li-O₂ cathode based on a novel triple phase structure by using a common textile

- Cathode is based on that of a textile, i.e., the surface is densely coated layer of carbon nanotubes (CNT)
 - hierarchical networked structure leads to decoupled pathways for electrolyte and oxygen gas
 - facilitate the transport of both components, significantly improving battery performance.
- Li-O₂ battery has a high discharge capacity of 8.6 mAh/cm², low overpotential of 1.2 V, and stable operation of over 50 cycles.
- Characterization of discharge product: XRD results indicate the formation of Li₂O₂; Raman spectroscopy and XPS were employed to analyze the discharge product and indicated Li₂O₂


Schematic of the wet textile based air cathode with decoupled pathways for electrolyte and oxygen.

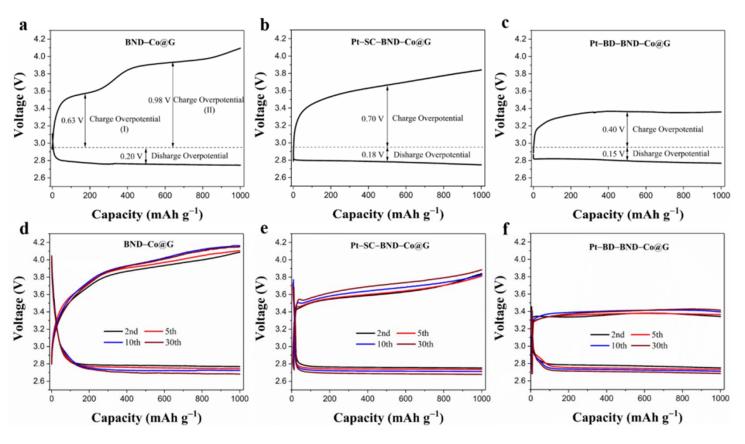
- (a) discharge/charge profile for the 50 cycles
- (b) termination voltage of charge/discharge for 50 cycles

Metal-organic framework derived cathode for Li-O₂

- We have used a bulk-doping approach to encapsulate platinum nanocomponents into a cobalt-based zeolitic imidazolate framework (ZIF)
- The fabricated cathode architectures feature highly uniform Pt and Pt₃Co nanoparticles within three different heterostructures shown below.

Schematic of Pt modified MOF-derived catalysts.

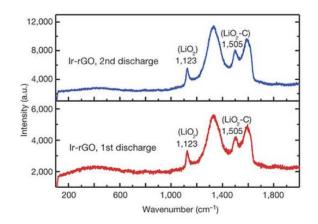
BND-Co@G = biphasic N-doped cobalt@graphene

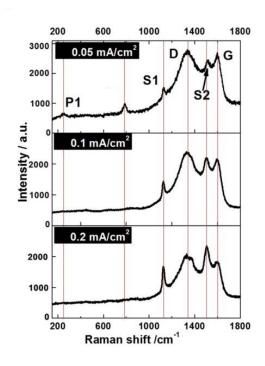

Pt-SC-BND-Co@G = Pt surface-coating BND-Co@G

Pt-BD-BND-Co@G = Pt bulk-doping BND-Co@G

Metal-organic framework derived cathodes for Li-O₂: voltage profiles

- The improvement in the materials for optimizing catalytic properties and maximizing active regions has enabled promising electrochemical performance in our testing.
- This has included higher specific capacity and a dramatic reduction in charge overpotential to 0.4 V in the case of the Pt-BD-BND-Co@G

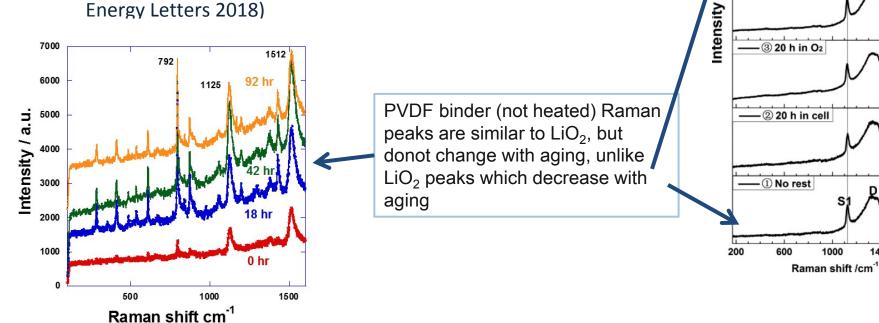

Voltage profiles of cathodes in the Swagelok-typed Li-O₂ cells



Identification of LiO₂ by Raman spectroscopy: two peaks

- There have been numerous assignments of Raman peaks at ~1123 and 1505 cm-1 to LiO₂ by us and others (for a review see Halder et al ACS Energy Letters 2018)
 - Peaks are found in discharge product of a Li-O₂ cell under some conditions
 - The 1123 cm-1 peak is from O₂ stretching frequency
 - The 1505 cm-1 peak is from coupling of coupling of LiO₂ to a carbon surface
- Other evidence has been reported that also confirms
 LiO₂ presence in some cases including DEMS, EPR, XRD, titration, Electron diffraction, XPS.

Raman peaks for LiO₂ with an Ir-rGO cathode (Lu, Amine, Curtiss, et al Nature 2016)


Raman peaks for LiO₂ (S1, S2) and Li₂O₂ (P1,P2) with an activated carbon cathode (JACS 2014)

Conclusion: strong evidence for presence of LiO₂ as a component in some Li-O₂ cells.

Identification of LiO₂ by Raman spectroscopy: PVDF binder?

- There has been some question as to whether the LiO₂ peaks may actually be due to degraded PVDF binder due to the fact that it has peaks close to these in Raman spectra
 - However, the peaks only appear if the binder has not been heated to ~100 C to drive off the water that can cause degradation
- We carried out ageing experiments to determine whether the LiO₂ and PVDF peaks are the same and whether the LiO₂ peaks have been missassigned (see Halder, Amine, Curtiss et al, ACS Energy Letters 2018)

Conclusion: With proper preparation of PVDF binder LiO₂ peaks are correctly assigned.

600

670 h in cell

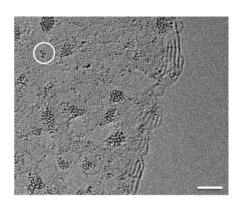
4 20 h in Ar

1040cm

5 20 h in vacuum

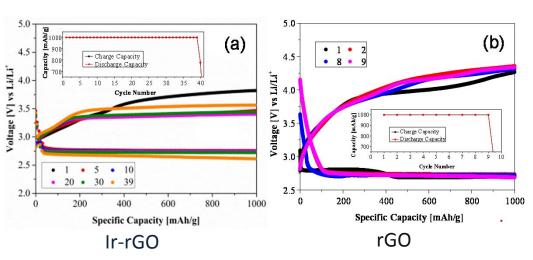
1000

1400


1080cm

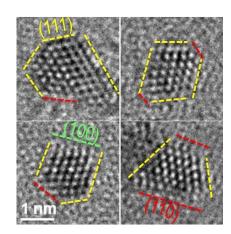
1400

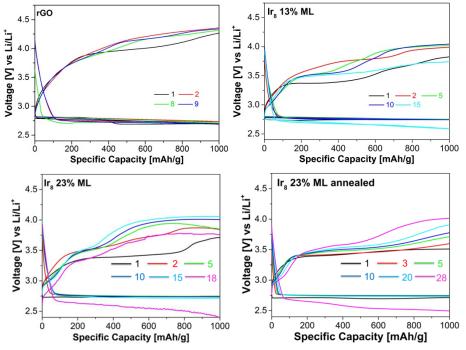
1800


Lithium superoxide based Li-O₂ battery using a cathode with on Ir nanoparticles: follow-up on role of Ir

- In previous work (Lu, Amine, Curtiss et al, Nature 2016) we reported on a Li-O₂ cathode with Ir nanoparticles on an rGO cathode that gives LiO₂ as the discharge product based on DEMS, XRD, EPR, Raman, and titration data
- The Ir nanoparticles become an Ir₃Li intermetallic that seem to template crystalline LiO₂ growth
- This significantly reduces the charge overpotential from >4 V for rGO to under 3.5 V
- Cell configuration: tetraglyme (ether) and LiTFSI electrolyte; lithium anode

Cathode: Ir nanoparticles on rGO

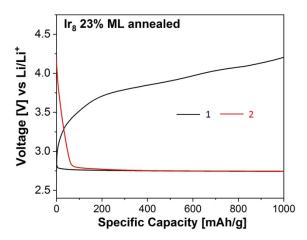

Voltage profiles


Conclusion: Ir nanoparticles are responsible for LiO₂ formation and lowered charge potential, but which size Ir nanoparticle is responsible is unclear since there is a range of sizes.

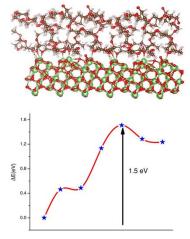
Lithium superoxide based Li-O₂ battery with a cathode based on size-specific Ir_n clusters

- Size selected Ir clusters to determine size dependence of LiO₂ formation
 - Ir₂, Ir₄, Ir₈ clusters with different coverages on rGO; also annealed to larger sizes
- Annealed Ir₈ clusters (~1.5 nm nanoparticles) give lowest charge potential and were chosen for further characterization
- Characterization showed the discharge product to be lithium superoxide
 - From DEMS, Raman, titration

HRTEM image of 23% ML Ir_8 -rGO cathode after annealing under vacuum for 24 hours at 100 $^{\circ}$ C showing ~1.5 nm NPs



Voltage profiles for rGO and Ir₈ clusters on rGO with different coverages and preparation


Conclusion: 1.5 nm Ir nanoparticles (NPs) give LiO₂ similar to our previously published non-uniform
 Ir NPs; work is underway to learn more about the effect of electrolyte and the role of the NPs.

Dependence of LiO₂ formation on type of electrolyte

- LiO₂ formation dependence on electrolyte was investigated with the Ir₈ annealed cathode that gave LiO₂ in TEGDME based electrolyte; all other conditions remained the same.
- Two other electrolytes were investigated (DME and DMSO)
- Both electrolytes gave higher charge potentials indicative of more Li₂O₂ formation
 - Li₂O₂ formation confirmed by titration and lack of Raman peaks for LiO₂
- Computational studies were carried out to determine how the electrolyte can stabilize Li-O₂ formation at the interface
 - All three electrolytes gave large barriers (1.5-1.8 eV) for O_2 dissolution from the LiO_2 surface; thus this doesnot explain the electrolyte dependence

Voltage profile for DME based electrolyte: much higher charge potential than TEGDME

DFT calculation for the barrier to O2 dissolution from LiO2 surface

Conclusion: There is a strong electrolyte dependence on the formation of LiO₂ with TEGDME favoring LiO₂ formation. We are investigating possible differences in LiO₂ disproportionation rates as an explanation

Response to last year reviewer's comments

No comments from last year.

Proposed Future Work

- Systematic studies of electrolytes including highly concentrated electrolytes, ionic liquids, and blends.
 - Effect on discharge product composition, cycle life, and efficiency
 - Understand effect on disproportionation
 - Investigate redox mediators
 - Computational studies to help design new electrolytes
 - Design new electrolytes for optimal Li-O₂ performance
- New electrodes for Li-O₂ cells
 - Explore alternative catalyst to Ir that stabilize LiO₂
 - Explore lithium anode protection to prevent anode corrosion and extend cycle life

Collaborations with other institutions and companies

- S. Vajda, A. Halder, ANL
 - Development of new cathode materials based on supported size-selected metal cluster
- S. Al-Hallaj, B. Chaplin UIC
 - Characterization of discharge products and cathode materials
- J. G Wen ANL
 - TEM characterization of discharge products and catalysts
- Y. Wu, Ohio State University
 - Development of electrolytes for Li-air batteries.
- A. Salehi, University of Illinois-Chicago
 - Li anode protection
- · A. Ngo, ANL
 - Computations
- K. C. Lau, California State University, Norridge
 - Computations

Summary

I. New cathode materials

- A novel Li-O₂ cathode for low charge potentials was developed with a novel triple phase structure based on a densely coated layer of carbon nanotubes (CNT) on textile fibers to create a hierarchical networked structure leading to decoupled pathways for electrolyte and oxygen gas
- We have used a bulk-doping approach to encapsulate platinum nanocomponents into a metal organic framework and found that certain types have low charge potentials.

II. <u>Lithium superoxide</u>

- The assignment of two Raman peaks to LiO₂ has been validated by eliminating degraded PVDF binder as a possible source of the peaks
- A Li- O_2 battery using a cathode based on Ir_8 clusters has been found to result in LiO_2 as the discharge product. The results help to establish the mechanism for formation of LiO_2 in the cell.

III. <u>Electrolytes</u>

The formation of LiO₂ in a Li-O₂ cell is found to have a surprising dependence on the choice of electrolyte. This opens the way to further optimizing the performance by electrolyte modification.